Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272915

ABSTRACT

ObjectiveTo determine how the severity of successively dominant SARS-CoV-2 variants changed over the course of the COVID-19 pandemic. DesignRetrospective cohort analysis. SettingCommunity- and hospital-sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board. ParticipantsAll sequenced non-nosocomial adult COVID-19 cases in NHS GG&C infected with the relevant SARS-CoV-2 lineages during analysis periods. B.1.177/Alpha: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta: 1st July - 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron: 1st - 31st December 2021 (n = 3858). Main outcome measuresAdmission to hospital, ICU, or death within 28 days of positive COVID-19 test ResultsFor B.1.177/Alpha, 300 of 807 B.1.177 cases were recorded as hospitalised or worse, compared to 232 of 833 Alpha cases. After adjustment, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177. For Alpha/Delta, 113 of 2104 Alpha cases were recorded as hospitalised or worse, compared to 230 of 3448 Delta cases. After adjustment, the cumulative odds ratio was 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha. For non-AY.4.2 Delta/AY.4.2 Delta, 845 of 8644 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 101 of 969 AY.4.2 Delta cases. After adjustment, the cumulative odds ratio was 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. For non-AY.4.2 Delta/Omicron, 30 of 1164 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 26 of 2694 Omicron cases. After adjustment, the median cumulative odds ratio was 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta. ConclusionsThe direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity demonstrates that severity associated with future SARS-CoV-2 variants is unpredictable.


Subject(s)
COVID-19 , Death
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.17.21260128

ABSTRACT

BackgroundThe B.1.1.7 (Alpha) SARS-CoV-2 variant of concern was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between the B.1.1.7 lineage infection and increased 28-day mortality. However, to date none have addressed the impact of infection on severity of illness or the need for oxygen or ventilation. MethodsIn this prospective clinical cohort sub-study of the COG-UK consortium, 1475 samples from hospitalised and community cases collected between the 1st November 2020 and 30th January 2021 were collected. These samples were sequenced in local laboratories and analysed for the presence of B.1.1.7-defining mutations. We prospectively matched sequence data to clinical outcomes as the lineage became dominant in Scotland and modelled the association between B.1.1.7 infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no support, 2. oxygen, 3. ventilation and 4. death. Additionally, we calculated an estimate of the growth rate of B.1.1.7-associated infections following introduction into Scotland using phylogenetic data. ResultsB.1.1.7 was responsible for a third wave of SARS-CoV-2 in Scotland, and rapidly replaced the previously dominant second wave lineage B.1.177) due to a significantly higher transmission rate ([~]5 fold). Of 1475 patients, 364 were infected with B.1.1.7, 1030 with B.1.177 and 81 with other lineages. Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (B.1.1.7 versus non-B.1.1.7). Viral load was higher in B.1.1.7 samples than in non-B.1.1.7 samples as measured by cycle threshold (Ct) value (mean Ct change: -2.46, 95% CI: -4.22, -0.70). ConclusionsThe B.1.1.7 lineage was associated with more severe clinical disease in Scottish patients than co-circulating lineages. FundingCOG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. Funding was also provided by UKRI through the JUNIPER consortium (grant number MR/V038613/1). Sequencing and bioinformatics support was funded by the Medical Research Council (MRC) core award (MC UU 1201412).

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.08.20248677

ABSTRACT

The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a 'lockdown' was introduced on 23rd March 2020 with a restriction of people's movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus 'success'. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.


Subject(s)
COVID-19 , Renal Insufficiency
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.427373

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Subject(s)
Lung Diseases , Pneumonia , Severe Acute Respiratory Syndrome , Weight Loss , Death , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL